587 research outputs found

    Modeling Adaptive Middleware and Its Applications to Military Tactical Datalinks

    Get PDF
    Open systems solutions and techniques have become the de facto standard for achieving interoperability between disparate, large-scale, legacy software systems. A key technology among open systems solutions and techniques is middleware. Middleware, in general, is used to isolate applications from dependencies introduced by hardware, operating systems, and other low-level aspects of system architectures. While middleware approaches are or will be integrated into operational military systems, many open questions exist about the appropriate areas to applying middleware. Adaptive middleware is middleware that provides an application with a run-time adaptation strategy, based upon system-level interfaces and properties. Adaptive middleware is an example of an active applied research area. Adaptive middleware is being developed and applied to meet the ever-increasing challenges set forth by the next generation of mission-critical distributed real-time and embedded (DRE) systems. The driving force behind many next-generation DRE systems is the establishment of QoS requirements typically associated with workloads that vary dynamically. The Weapon System Open Architecture (WSOA), an adaptive middleware platform developed by Boeing, is modeled as a part of this research to determine the scalability of the architecture. The WSOA adaptive middleware was previously flight-tested with one tactical node, and the test results represent the performance baseline the architecture. The WSOA adaptive middleware is modeled with 1, 2, 4, 8 and 16 tactical nodes. The results of the modeling and simulation is that the WSOA adaptive middleware can achieve the performance baseline achieved during the original flight-test, in the cases of 1, 2, and 4 tactical nodes. In addition, the results of the modeling and simulation also demonstrate that the WSOA adaptive middleware cannot achiev

    Augmented Reality for Enhanced Visualization of MOF Adsorbents

    Get PDF
    Augmented reality (AR) is an emerging technique used to improve visualization and comprehension of complex 3D materials. This approach has been applied not only in the field of chemistry but also in real estate, physics, mechanical engineering, and many other areas. Here, we demonstrate the workflow for an app-free AR technique for visualization of metal–organic frameworks (MOFs) and other porous materials to investigate their crystal structures, topology, and gas adsorption sites. We think this workflow will serve as an additional tool for computational and experimental scientists working in the field for both research and educational purposes

    DigiMOF: A Database of Metal–Organic Framework Synthesis Information Generated via Text Mining

    Get PDF
    The vastness of materials space, particularly that which is concerned with metal–organic frameworks (MOFs), creates the critical problem of performing efficient identification of promising materials for specific applications. Although high-throughput computational approaches, including the use of machine learning, have been useful in rapid screening and rational design of MOFs, they tend to neglect descriptors related to their synthesis. One way to improve the efficiency of MOF discovery is to data-mine published MOF papers to extract the materials informatics knowledge contained within journal articles. Here, by adapting the chemistry-aware natural language processing tool, ChemDataExtractor (CDE), we generated an open-source database of MOFs focused on their synthetic properties: the DigiMOF database. Using the CDE web scraping package alongside the Cambridge Structural Database (CSD) MOF subset, we automatically downloaded 43,281 unique MOF journal articles, extracted 15,501 unique MOF materials, and text-mined over 52,680 associated properties including the synthesis method, solvent, organic linker, metal precursor, and topology. Additionally, we developed an alternative data extraction technique to obtain and transform the chemical names assigned to each CSD entry in order to determine linker types for each structure in the CSD MOF subset. This data enabled us to match MOFs to a list of known linkers provided by Tokyo Chemical Industry UK Ltd. (TCI) and analyze the cost of these important chemicals. This centralized, structured database reveals the MOF synthetic data embedded within thousands of MOF publications and contains further topology, metal type, accessible surface area, largest cavity diameter, pore limiting diameter, open metal sites, and density calculations for all 3D MOFs in the CSD MOF subset. The DigiMOF database and associated software are publicly available for other researchers to rapidly search for MOFs with specific properties, conduct further analysis of alternative MOF production pathways, and create additional parsers to search for additional desirable properties

    A call for public archives for biological image data

    Get PDF
    Public data archives are the backbone of modern biological and biomedical research. While archives for biological molecules and structures are well-established, resources for imaging data do not yet cover the full range of spatial and temporal scales or application domains used by the scientific community. In the last few years, the technical barriers to building such resources have been solved and the first examples of scientific outputs from public image data resources, often through linkage to existing molecular resources, have been published. Using the successes of existing biomolecular resources as a guide, we present the rationale and principles for the construction of image data archives and databases that will be the foundation of the next revolution in biological and biomedical informatics and discovery.Comment: 13 pages, 1 figur

    Genetic Effects at Pleiotropic Loci Are Context-Dependent with Consequences for the Maintenance of Genetic Variation in Populations

    Get PDF
    Context-dependent genetic effects, including genotype-by-environment and genotype-by-sex interactions, are a potential mechanism by which genetic variation of complex traits is maintained in populations. Pleiotropic genetic effects are also thought to play an important role in evolution, reflecting functional and developmental relationships among traits. We examine context-dependent genetic effects at pleiotropic loci associated with normal variation in multiple metabolic syndrome (MetS) components (obesity, dyslipidemia, and diabetes-related traits). MetS prevalence is increasing in Western societies and, while environmental in origin, presents substantial variation in individual response. We identify 23 pleiotropic MetS quantitative trait loci (QTL) in an F16 advanced intercross between the LG/J and SM/J inbred mouse strains (Wustl:LG,SM-G16; nβ€Š=β€Š1002). Half of each family was fed a high-fat diet and half fed a low-fat diet; and additive, dominance, and parent-of-origin imprinting genotypic effects were examined in animals partitioned into sex, diet, and sex-by-diet cohorts. We examine the context-dependency of the underlying additive, dominance, and imprinting genetic effects of the traits associated with these pleiotropic QTL. Further, we examine sequence polymorphisms (SNPs) between LG/J and SM/J as well as differential expression of positional candidate genes in these regions. We show that genetic associations are different in different sex, diet, and sex-by-diet settings. We also show that over- or underdominance and ecological cross-over interactions for single phenotypes may not be common, however multidimensional synthetic phenotypes at loci with pleiotropic effects can produce situations that favor the maintenance of genetic variation in populations. Our findings have important implications for evolution and the notion of personalized medicine

    Female-Biased Dispersal and Gene Flow in a Behaviorally Monogamous Mammal, the Large Treeshrew (Tupaia tana)

    Get PDF
    Background: Female-biased dispersal (FBD) is predicted to occur in monogamous species due to local resource competition among females, but evidence for this association in mammals is scarce. The predicted relationship between FBD and monogamy may also be too simplistic, given that many pair-living mammals exhibit substantial extra-pair paternity. Methodology/Principal Findings: I examined whether dispersal and gene flow are female-biased in the large treeshrew (Tupaia tana) in Borneo, a behaviorally monogamous species with a genetic mating system characterized by high rates (50%) of extra-pair paternity. Genetic analyses provided evidence of FBD in this species. As predicted for FBD, I found lower mean values for the corrected assignment index for adult females than for males using seven microsatellite loci, indicating that female individuals were more likely to be immigrants. Adult female pairs were also less related than adult male pairs. Furthermore, comparison of Bayesian coalescent-based estimates of migration rates using maternally and bi-parentally inherited genetic markers suggested that gene flow is female-biased in T. tana. The effective number of migrants between populations estimated from mitochondrial DNA sequence was three times higher than the number estimated using autosomal microsatellites. Conclusions/Significance: These results provide the first evidence of FBD in a behaviorally monogamous species without mating fidelity. I argue that competition among females for feeding territories creates a sexual asymmetry in the costs an

    Soluble Rhesus Lymphocryptovirus gp350 Protects against Infection and Reduces Viral Loads in Animals that Become Infected with Virus after Challenge

    Get PDF
    Epstein-Barr virus (EBV) is a human lymphocryptovirus that is associated with several malignancies. Elevated EBV DNA in the blood is observed in transplant recipients prior to, and at the time of post-transplant lymphoproliferative disease; thus, a vaccine that either prevents EBV infection or lowers the viral load might reduce certain EBV malignancies. Two major approaches have been suggested for an EBV vaccine- immunization with either EBV glycoprotein 350 (gp350) or EBV latency proteins (e.g. EBV nuclear antigens [EBNAs]). No comparative trials, however, have been performed. Rhesus lymphocryptovirus (LCV) encodes a homolog for each gene in EBV and infection of monkeys reproduces the clinical, immunologic, and virologic features of both acute and latent EBV infection. We vaccinated rhesus monkeys at 0, 4 and 12 weeks with (a) soluble rhesus LCV gp350, (b) virus-like replicon particles (VRPs) expressing rhesus LCV gp350, (c) VRPs expressing rhesus LCV gp350, EBNA-3A, and EBNA-3B, or (d) PBS. Animals vaccinated with soluble gp350 produced higher levels of antibody to the glycoprotein than those vaccinated with VRPs expressing gp350. Animals vaccinated with VRPs expressing EBNA-3A and EBNA-3B developed LCV-specific CD4 and CD8 T cell immunity to these proteins, while VRPs expressing gp350 did not induce detectable T cell immunity to gp350. After challenge with rhesus LCV, animals vaccinated with soluble rhesus LCV gp350 had the best level of protection against infection based on seroconversion, viral DNA, and viral RNA in the blood after challenge. Surprisingly, animals vaccinated with gp350 that became infected had the lowest LCV DNA loads in the blood at 23 months after challenge. These studies indicate that gp350 is critical for both protection against infection with rhesus LCV and for reducing the viral load in animals that become infected after challenge. Our results suggest that additional trials with soluble EBV gp350 alone, or in combination with other EBV proteins, should be considered to reduce EBV infection or virus-associated malignancies in humans
    • …
    corecore